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Rapid relaxation in a one-dimensional gravitating system
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The relaxation of one-dimensional gravitating systems has been studied over the past three decades. The
numerical efficiency with which these models can be simulated makes them ideal for studying long time
evolution of gravitational systems. Much controversy has surrounded the relaxation time for the one-
dimensional system dfl parallel mass sheets. Early work suggested a relaxation on the or8i&rafarac-
teristic times; however, subsequent simulations did not bear this out. Instead, it has been shown that relaxation,
if it occurs at all, takes on the order of 16haracteristic times. Here we consider the relaxation of a different
one-dimensional system consisting of concentric spherical mass shells. Past studies have shown the two shell
system has more robust ergodic properties than its planar counterpart, possibly suggesting a more rapid
relaxation for theN shell system. We found that the simulation for 4, 16, and 64 shells converges to the density
obtained in the Vlasov limit on a much shorter time scale with an upper bound of approximatetid@c-
teristic times. This is orders of magnitude smaller than in the sheet sy3d63-651X%97)51011-7

PACS numbes): 46.10+2z, 05.45+b, 95.10.Fh

[. INTRODUCTION as they do in the sheet system. In this communication we
report the results of our studies of larger shell systems. We
An important question in gravitational dynamics concernsdetermine the Vlasov density distribution for the spherical
the amount of time that a system takes to reach equilibriumshell system and compare it to the average particle distribu-
One-dimensional models, due to their numerical efficiencytion from simulations of systems with 4, 16, and 64 shells.
are ideal for studying the long time evolution for gravita- For the case of the planar system Rybicki derived exact mi-
tional systems. The most popular model has been the oné&focanonical distributions for thé&l particle system and
dimensional system consisting fparallel mass sheefg—  showed that the Viasov limit was approached\as e [11].
5]. It has been suggested that the sheet system could serve\&¢ find that, as the number of shells in the system increases,
a model to test astrophysical theories concerning the aghe simulation distribution approaches the Vlasov distribu-
proach to equilibrium for stellar systems; however, simula-tion and, even for only 64 particles, the agreement is quite
tions show that if the system reaches equilibrium at all, itgood. Moreover, in each instance of 4, 16, and 64 particles,
takes a very long time. This casts into question its usefulnesie final distribution from the simulation remains the same
as a test model and has stimulated a search for other systeygen the initial conditions are drastically changed. For all
which unambiguously relax to equilibrium. simulations, the time required for the shell system to con-
Reidl and Miller[6] have compared the Vlasov density vVerge to the final distribution is significantly smaller than in
distribution for a one-dimensional system of parallel masghe parallel sheet system. This robust convergence suggests
sheets to the distribution obtained from a dynamical comthat the spherical shell system may be a more useful model
puter simulation of the system with 100 sheets. In mosfor testing astrophysical theories concerning the evolution of
cases, depending on the initial conditions, they found a sigstellar systems.
nificant difference between the equilibrium Vlasov distribu-
tion and the average distribution of particles determined
from dynamical simulations lasting on the order of thousands !l DESCRIPTION OF SPHERICAL SHELL MODEL

of crossing times. Accompanying this failure to relax in the  \ye consider a system of concentric spherical mass shells
predicted time scale, they found correlations in position angh¢ equal mass and uniform mass density. The motion of each
velocity that persisted for the duration of the runs. A latergpe|iis purely radial; there is no rotational motion. The shells

study of the same system suggests that the time scale fggoye under their mutual and self gravitation, with the accel-
relaxation, if it exists, is on the order of 1@haracteristic eration of theith shell given by

times[7]. It has been conjectured that preferred, “sticky”

regions in the phase space of this system may be responsible

for the long relaxation time scal®,9]. In a system consist- aj=—Gm(i—3)/r?, (1)

ing of three mass sheets Froeschle and Scheidecker found

that only 4% of the phase space was actually occupied by

chaotic orbitg3]. where the shells are numbered 1,2,...n with i=1 corre-
Recently, we studied a system of two concentric sphericagponding to the innermost shellG is the universal gravita-

mass shells and found a much larger chaotic component itional constantm is the mass of an individual shell, andis

the phase spadd0]. This suggests that the spherical shellthe radius of theth shell. In this study, we chose units such

system may reach equilibrium more quickly, if the correla-thatG=1, the total mass is 1, and the individual masss

tions between particleishells do not persist for long times, 1/n. The energy of the system is conserved and is given by
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The system is contained in a spherical box with reflectinc
boundaries. In addition, there is a reflecting inner boundan 3511
around the origin of the system to avoid numerical difficul- s\l
ties that arise from the singularity of the gravitational force.
As the shells move, they can intersect and pass throug
one another. At the point of crossing, there is a discontinuity 2] .
in the amount of mass contained within a given shell’s ra-
dius. For example, at a crossing the2 shell becomes the

i=1 shell and the interior mass associated with that shel i

decreases fromrm to zero. This discontinuity in interior mass os H \‘\‘\[\‘,\‘_\
at a crossing gives rise to a discontinuity in each shell’s . . ‘ . . , , . ,
acceleration. Between crossings, the acceleration of a shell o1 02 03 04 05 06 07 08 09 !
continuous and its energy is conserved.

We have developed an algorithm that allows for the evo-  FiG. 1. The density distribution predicted from the Viasov
lution of the system without numerically integrating the theory for the spherical shell systeftotal energy= —0.8, inner
equations of motion. From the conservation of energy ofoundary radius 0.1) is shown. The vertical lines show the bound-
each shell between crossings, it is possible to solve for theries of the equal probability cells used to determine the average
time that theith shell will reach a specified radius, given  density distribution for the simulation. All units are dimensionless.
the initial timety;, radiusrg;, and shell energ¥;, by per-

density
N
w
'

forming the integration d [rz dp} G "
|- r,
) e dr | p dr Bp(r) (4)
ti—tp; == dr| (2/m)| Ej+ — 3
vl J'ro’i (2| & r ® where8=m/kgT andkg is Boltzmann's constarjtL2]. Note

that this is different than the governing equation for the

where a;=Gm?(i—3). The proper sign is determined by three-dimensional system of isothermal spheres that has been
previous knowledge of whether the shell is moving inwardexplored in the literaturgl 2]. Equation(4) can be reduced to
(—) or outward(+). Two possible outcomes of the integra- a set of two coupled first-order differential equations in the
tion in the above equation are possible, depending on thgariable g=8p and solved by numerical integratiofwe
sign of the energy of the shell. chose Burlisch-Stoef13] for its accuracy and efficiengy

The event-driven algorithm used in this study is based ofwith the appropriate boundary conditions at the inner bound-
the ability to calculate the time a shell reaches a specifigry radiusa. The derivativedg/dr atr=a is zero, andy(a)
radius. There are three possible events for each shell: collis chosen to yield the desired total energy of the system. The
sion with the boundary, turning poirtonly possible for a energy of the Vlasov distribution is given by
shell with negative energy and positive velogijtgnd cross-
ing with another shell. The basic strategy for the algorithm is E=[bp(b)—ap(a)]/B—1/2B, (5)
to determine the times at which these events occur for all . ) ) .
shells and then sort these times to find the next event. Th&herea is the radius of the inner boundary aidis the
appropriate initial conditions are updated and the process i&adius of the outer boundary. The total mass of the system
repeated. This algorithm for following the evolution of the M, is set to 1 and we determin@from integratingg(r),
system has many advantages over one that numerically inte- b b
grates the equations of motion. First, the efficiency of solv- M :J p(f)dr=,3J g(r)ydr=1. (6)
ing only for events allows the system to be followed for a a
much longer time. In addition, the truncation error associated
with any numerical integration scheme is avoided. ComputefPnceg(r) andg are determinedy(r) can be calculated and
round-off error is also reduced since it is introduced only athe total energy of the system can be determined. Figure 1
events instead of at every time increment, as is the case wihowsp(r) for an inner boundary radius of 0.1 and a total

a

numerical integration methods. energy of—0.8. _ _
To determine how well this compares to a dynamical
Ill. COMPARISON OF VLASOV AND SIMULATION S|mulatt|)on with ahflr_ute num(tj)er of pt?rtlclgs,.we. d|V|<218d tne f
DENSITY DISTRIBUTIONS space between the inner and outer boundaries into 20 cells o

equal probability, i.e., the area under the Vlasov density
To predict a density profile for the shell system, we con-curve is the same for each cédlee Fig. 1L The initial posi-

sidered the system in the Vlasov limit of an infinite numbertions and velocities for the simulation were assigned accord-
of particles with the mass of the individual particles ap-ing to the total energy and inner boundary radius specified
proaching zero. In this approximation, the motion of the sysfor the Vlasov distribution. The shells’ positions were
tem is described by a simple fluid flow. The Vlasov one-equally spaced between the inner and outer boundary and the
dimensional density(r) for the spherical shell system is difference between the total system energy and their total
given by the second-order differential equation, potential energy was divided equally by assigning equal ve-
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FIG. 2. The variance between simulati¢64 particles, total
energy=0.8, inner barrier radius0.1) and Vlasov prediction is FIG. 3. The average density distribution for the simulation of 4
plotted vs time. All units are dimensionless. Note that in 800 timeparticles, 16 particles, and 64 particles is shown. All units are di-
units the fluctuations in variance have died out and the system hagensionless. The dashed line shows the density distribution ob-
relaxed. tained from the Vlasov theory. Convergence to the Vlasov limit is
observed for increasing population.

locities to all shells. The system was sampled at equal time

intervals(every 0.1 time unit in our system of unitand the  ment is surprising since the Vlasov theory assumes that the
number of particles was accumulated in the appropriate cel\ mber of particles is infinite.

according to the position of the shell. To determine whento ;s important to note that, in general, this agreement was
t cell lati d th I lati t half th r\’?ot found in the study of the sheet system by Reidl and
gﬂgggt ﬁﬁmggfzfs'g?n alr(]as Aﬁ g:” pgpﬁlgtilcojgsawerae no:?Miller [6]. They studied systems with 100 sheets with five
. L pies. ! POp different initial conditions and each case demonstrated a dif-
malized by dividing the cell population by the total numberferent density distribution at the end of the simulation. In

of samples. During a sampl®;=P;(t) is the currentnor- y @ : L - o

. . . g . four out of the five different initial conditions, their simula-

malized population of celli, and P is the (normalized . . . - .
g . tions did not agree with the Vlasov prediction. These simu-

population of celii at half of the current number of samples, . : T
lations were carried out for about 1000 characteristic time

i.e., P{=P;(t/2). The simulation was stopped when the sum . o . )
- ._units (one characteristic time for the sheet system is the time
of the square of deviations between the current populatio . .
; . that a sheet takes to traverse the systérhe differences in
and the halfway point population, . A . o .
density distributions for different initial conditions suggest

20 that the system still “remembers” the initial condition and
02:2 (Pi_pi')2/20’ 7) has not yet reached equilibrium. To test the spherical shell
i=1 model, we created different initial conditions for the same

. energy and inner boundary radius and ran the simulation
fell below 1.0<107°. In Fig. 2 we replace®; with 1, the  again. The initial virial ratio varied from 0.06 to 1.3 for the
predicted Vlasov result, and plot the variance as a function ofyq different initial conditions. All three casés, 16, and 64
time for the 64-particle system. It is apparent from the figureparticleg were run with the new initial conditions and the

that the fluctuations gradually vanish, indicating the ap-gensity distributions were found to be almost identical to the
proach to equilibrium, but the decay does not follow a simple;nas shown in Fig. 3.

functional form. Therefore any definition of the relaxation The relaxation time scales for the parallel sheet and

time bas_ed on this fu_nctlon_ls arbitrary. The criteria we chos pherical shell systems are significantly different. It has been
for terminating the simulations guarantees that we are we . . :
. shown by simulation that the sheet system may reach equi-
past the point where the system has settled down and th f%rium on a time scale of X10’ characteristic times. A
provides an upper bound for any reasonable choice of relax- LT . ' .
commonly used characteristic time for spherical systems is

ation time. h . h \d Kineti
Figure 3 shows the simulation results for systems with 4t1€ amount of time that a cold systemo kinetic energy

16, and 64 shells. The horizontal line indicating a populatiorf2kes to collapse and then expand back to its original distri-
of one for all cells represents the Vlasov density distribution Pution. We found that in all instances the upper bound crite-
The distribution for the four-particle system shows a markedia (0°<1.0x10~°%) was attained in less thanx4.0° char-
population deficiency in the inner cells and a surplus in theacteristic times, about two orders of magnitude less than that
outer cells compared with the Vlasov density. The 16-required for relaxation of the sheet system. The duration of
particle case also shows a similar structure, but the differencéie simulations carried out by Reidl and Miller, in which
between simulation and Vlasov prediction is relatively relaxation was not observed, was on the order of 1000 units.
smaller. For 64 particles, the density distribution shows ex{n contrast, it can be seen from Fig. 2 that relaxation of the
cellent agreement with the Vlasov prediction. This agreeshell system was completed in about 800 units.
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IV. CONCLUDING REMARKS ber of particles increases from 4 to 64. Similar behavior was
recently observed in the planar sheet sysf@8]. We note

theTha?ra:el;/eollgﬂggt Zf ;T:r:?nhtevcgile:hggt:ylsiti?sql ;ﬂ:giga‘;ﬁgﬁn;that the average density profiles obtained from the simulation
Ne p: y P T o not change when new initial conditiofithat still retain
time is much less than two orders of magnitude smaller for

the shell system; second, for the energy considered, memothe total energy and inner boundary radiase imposed.

of the initial state is lost much more rapidly for the shell his convergence to the same density profile for different
system pidly initial conditions gives added confidence that the system is

Several factors could be responsible for the differences ir(?rgOdIC and sampling the complete phase space. In later

behavior between the parallel sheet and spherical shell s work we will show that a phase transition is predicted in the
) P P Y¥lasov limit for the shell system for certain values of energy
tem. First, the parallel sheet system does not have the refle

tive boundaries that are present in the shell system. The nd inner boundary radius. In this paper, however, we have

boundaries induce discontinuities in the shells’ velocit Thosen system parameters far from this transition in order to
y’study the system isolated from its influence.

T B B ot A oBen Gueston for ol th lar sheet and e spher
9 Y. Y : P cal shell systems concerns the population dependence of the
a core-halo structure that develops in the sheet system. It has

been sugaested that the weak interaction between core as stem relaxation time. In each case, randomness is intro-
_Sugg . L Uced into the dynamics by the crossing of a pair of particles
halo is responsible for the slow relaxation time of the shee

system 8]. However, core-halo structures also develop in the sheets or shells Whenever a crossing occurs, there is a
Y ’ ' P discontinuous change in the acceleration of each particle.

one-dimensional spherical shell systems studied by Henoﬂecently for the sheet system, one of us has shown that if

[14] and Yangurazova and Bisnovatyi-Koghth] and yet he crossing times are random then, in the laxgkmit, the

both studies find evidence of a stationary state. These modeﬁs : : .
dcceleration of a particle becomes a diffusi@f]. The con-
do not have an outer boundary and shells may escape froni . T . .
. S ) .__sequence is a relaxation time which scales WthSince the
the system so their equilibrium is not defined. The spherical,. A

X . . . . discontinuity is common to both systems, the arguments used

models used in these studies differ from ours by including an ) -
. ) ; . _apply equally to the system considered here. The validity of
angular momentum term in the equations of motion which

effectively shields the singularity at the center of the system?/tl](')srktheory has yet to be tested and is the subject of future

Recently these models possessing angular momentum have

been used to investigate the self-similar structir®] and

Lynden-Bell theory of violent relaxatiofl7] of spherical

mass distributions. The authors are grateful for the support of the Research
In the spherical shell model the Vlasov approximation forFoundation of Texas Christian University. We thank M.

the density profile is approached under the specified condKiessling for helpful discussions during the course of this

tions for total energy and inner boundary radius as the numwork.
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