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Rapid relaxation in a one-dimensional gravitating system
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The relaxation of one-dimensional gravitating systems has been studied over the past three decades. The
numerical efficiency with which these models can be simulated makes them ideal for studying long time
evolution of gravitational systems. Much controversy has surrounded the relaxation time for the one-
dimensional system ofN parallel mass sheets. Early work suggested a relaxation on the order ofN2 charac-
teristic times; however, subsequent simulations did not bear this out. Instead, it has been shown that relaxation,
if it occurs at all, takes on the order of 107 characteristic times. Here we consider the relaxation of a different
one-dimensional system consisting of concentric spherical mass shells. Past studies have shown the two shell
system has more robust ergodic properties than its planar counterpart, possibly suggesting a more rapid
relaxation for theN shell system. We found that the simulation for 4, 16, and 64 shells converges to the density
obtained in the Vlasov limit on a much shorter time scale with an upper bound of approximately 105 charac-
teristic times. This is orders of magnitude smaller than in the sheet system.@S1063-651X~97!51011-7#

PACS number~s!: 46.10.1z, 05.45.1b, 95.10.Fh
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I. INTRODUCTION

An important question in gravitational dynamics conce
the amount of time that a system takes to reach equilibri
One-dimensional models, due to their numerical efficien
are ideal for studying the long time evolution for gravit
tional systems. The most popular model has been the
dimensional system consisting ofN parallel mass sheets@1–
5#. It has been suggested that the sheet system could ser
a model to test astrophysical theories concerning the
proach to equilibrium for stellar systems; however, simu
tions show that if the system reaches equilibrium at all
takes a very long time. This casts into question its usefuln
as a test model and has stimulated a search for other sys
which unambiguously relax to equilibrium.

Reidl and Miller @6# have compared the Vlasov densi
distribution for a one-dimensional system of parallel ma
sheets to the distribution obtained from a dynamical co
puter simulation of the system with 100 sheets. In m
cases, depending on the initial conditions, they found a
nificant difference between the equilibrium Vlasov distrib
tion and the average distribution of particles determin
from dynamical simulations lasting on the order of thousa
of crossing times. Accompanying this failure to relax in t
predicted time scale, they found correlations in position a
velocity that persisted for the duration of the runs. A la
study of the same system suggests that the time scale
relaxation, if it exists, is on the order of 107 characteristic
times @7#. It has been conjectured that preferred, ‘‘sticky
regions in the phase space of this system may be respon
for the long relaxation time scale@8,9#. In a system consist
ing of three mass sheets Froeschle and Scheidecker f
that only 4% of the phase space was actually occupied
chaotic orbits@3#.

Recently, we studied a system of two concentric spher
mass shells and found a much larger chaotic componen
the phase space@10#. This suggests that the spherical sh
system may reach equilibrium more quickly, if the corre
tions between particles~shells! do not persist for long times
561063-651X/97/56~5!/4963~4!/$10.00
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as they do in the sheet system. In this communication
report the results of our studies of larger shell systems.
determine the Vlasov density distribution for the spheri
shell system and compare it to the average particle distr
tion from simulations of systems with 4, 16, and 64 she
For the case of the planar system Rybicki derived exact
crocanonical distributions for theN particle system and
showed that the Vlasov limit was approached asN→` @11#.
We find that, as the number of shells in the system increa
the simulation distribution approaches the Vlasov distrib
tion and, even for only 64 particles, the agreement is qu
good. Moreover, in each instance of 4, 16, and 64 partic
the final distribution from the simulation remains the sam
when the initial conditions are drastically changed. For
simulations, the time required for the shell system to co
verge to the final distribution is significantly smaller than
the parallel sheet system. This robust convergence sugg
that the spherical shell system may be a more useful mo
for testing astrophysical theories concerning the evolution
stellar systems.

II. DESCRIPTION OF SPHERICAL SHELL MODEL

We consider a system of concentric spherical mass sh
of equal mass and uniform mass density. The motion of e
shell is purely radial; there is no rotational motion. The she
move under their mutual and self gravitation, with the acc
eration of thei th shell given by

ai52Gm~ i 2 1
2 !/r i

2, ~1!

where the shells are numberedi 51,2,...,n with i 51 corre-
sponding to the innermost shell.G is the universal gravita-
tional constant,m is the mass of an individual shell, andr i is
the radius of thei th shell. In this study, we chose units suc
that G51, the total mass is 1, and the individual massm is
1/n. The energy of the system is conserved and is given
R4963 © 1997 The American Physical Society
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E5(
i 51

n
1
2 mv i

22Gm2~ i 2 1
2 !/r i . ~2!

The system is contained in a spherical box with reflect
boundaries. In addition, there is a reflecting inner bound
around the origin of the system to avoid numerical diffic
ties that arise from the singularity of the gravitational forc

As the shells move, they can intersect and pass thro
one another. At the point of crossing, there is a discontinu
in the amount of mass contained within a given shell’s
dius. For example, at a crossing thei 52 shell becomes the
i 51 shell and the interior mass associated with that s
decreases fromm to zero. This discontinuity in interior mas
at a crossing gives rise to a discontinuity in each she
acceleration. Between crossings, the acceleration of a sh
continuous and its energy is conserved.

We have developed an algorithm that allows for the e
lution of the system without numerically integrating th
equations of motion. From the conservation of energy
each shell between crossings, it is possible to solve for
time that thei th shell will reach a specified radiusr i , given
the initial time t0,i , radiusr 0,i , and shell energyEi , by per-
forming the integration

t t2t0,i56E
r 0,i

r i
drF ~2/m!S Ei1

a i

r D G21/2

~3!

where a i5Gm2( i 2 1
2 ). The proper sign is determined b

previous knowledge of whether the shell is moving inwa
~2! or outward~1!. Two possible outcomes of the integr
tion in the above equation are possible, depending on
sign of the energy of the shell.

The event-driven algorithm used in this study is based
the ability to calculate the time a shell reaches a spec
radius. There are three possible events for each shell: c
sion with the boundary, turning point~only possible for a
shell with negative energy and positive velocity!, and cross-
ing with another shell. The basic strategy for the algorithm
to determine the times at which these events occur for
shells and then sort these times to find the next event.
appropriate initial conditions are updated and the proces
repeated. This algorithm for following the evolution of th
system has many advantages over one that numerically
grates the equations of motion. First, the efficiency of so
ing only for events allows the system to be followed for
much longer time. In addition, the truncation error associa
with any numerical integration scheme is avoided. Compu
round-off error is also reduced since it is introduced only
events instead of at every time increment, as is the case
numerical integration methods.

III. COMPARISON OF VLASOV AND SIMULATION
DENSITY DISTRIBUTIONS

To predict a density profile for the shell system, we co
sidered the system in the Vlasov limit of an infinite numb
of particles with the mass of the individual particles a
proaching zero. In this approximation, the motion of the s
tem is described by a simple fluid flow. The Vlasov on
dimensional densityr(r ) for the spherical shell system i
given by the second-order differential equation,
g
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dr F r 2

r

dr

dr G52Gbr~r !, ~4!

whereb5m/kBT andkB is Boltzmann’s constant@12#. Note
that this is different than the governing equation for t
three-dimensional system of isothermal spheres that has b
explored in the literature@12#. Equation~4! can be reduced to
a set of two coupled first-order differential equations in t
variable g5br and solved by numerical integration~we
chose Burlisch-Stoer@13# for its accuracy and efficiency!
with the appropriate boundary conditions at the inner bou
ary radiusa. The derivativedg/dr at r 5a is zero, andg(a)
is chosen to yield the desired total energy of the system.
energy of the Vlasov distribution is given by

E5@br~b!2ar~a!#/b21/2b, ~5!

where a is the radius of the inner boundary andb is the
radius of the outer boundary. The total mass of the sys
M , is set to 1 and we determineb from integratingg(r ),

M5E
a

b

r~r !dr5bE
a

b

g~r !dr51. ~6!

Onceg(r ) andb are determined,r(r ) can be calculated and
the total energy of the system can be determined. Figur
showsr(r ) for an inner boundary radius of 0.1 and a tot
energy of20.8.

To determine how well this compares to a dynamic
simulation with a finite number of particles, we divided th
space between the inner and outer boundaries into 20 cel
equal probability, i.e., the area under the Vlasov dens
curve is the same for each cell~see Fig. 1!. The initial posi-
tions and velocities for the simulation were assigned acco
ing to the total energy and inner boundary radius specifi
for the Vlasov distribution. The shells’ positions wer
equally spaced between the inner and outer boundary and
difference between the total system energy and their to
potential energy was divided equally by assigning equal

FIG. 1. The density distribution predicted from the Vlaso
theory for the spherical shell system~total energy520.8, inner
boundary radius50.1! is shown. The vertical lines show the bound
aries of the equal probability cells used to determine the aver
density distribution for the simulation. All units are dimensionles
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locities to all shells. The system was sampled at equal t
intervals~every 0.1 time unit in our system of units! and the
number of particles was accumulated in the appropriate
according to the position of the shell. To determine when
stop the simulation, a comparison was made between
current cell population and the cell population at half t
current number of samples. All cell populations were n
malized by dividing the cell population by the total numb
of samples. During a sample,Pi5Pi(t) is the current~nor-
malized! population of cell i , and Pi8 is the ~normalized!
population of celli at half of the current number of sample
i.e., Pi85Pi(t/2). The simulation was stopped when the su
of the square of deviations between the current popula
and the halfway point population,

s25(
i 51

20

~Pi2Pi8!2/20, ~7!

fell below 1.031028. In Fig. 2 we replacePi
8 with 1, the

predicted Vlasov result, and plot the variance as a functio
time for the 64-particle system. It is apparent from the figu
that the fluctuations gradually vanish, indicating the a
proach to equilibrium, but the decay does not follow a sim
functional form. Therefore any definition of the relaxatio
time based on this function is arbitrary. The criteria we cho
for terminating the simulations guarantees that we are w
past the point where the system has settled down and
provides an upper bound for any reasonable choice of re
ation time.

Figure 3 shows the simulation results for systems with
16, and 64 shells. The horizontal line indicating a populat
of one for all cells represents the Vlasov density distributi
The distribution for the four-particle system shows a mark
population deficiency in the inner cells and a surplus in
outer cells compared with the Vlasov density. The 1
particle case also shows a similar structure, but the differe
between simulation and Vlasov prediction is relative
smaller. For 64 particles, the density distribution shows
cellent agreement with the Vlasov prediction. This agr

FIG. 2. The variance between simulation~64 particles, total
energy50.8, inner barrier radius50.1! and Vlasov prediction is
plotted vs time. All units are dimensionless. Note that in 800 ti
units the fluctuations in variance have died out and the system
relaxed.
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ment is surprising since the Vlasov theory assumes that
number of particles is infinite.

It is important to note that, in general, this agreement w
not found in the study of the sheet system by Reidl a
Miller @6#. They studied systems with 100 sheets with fi
different initial conditions and each case demonstrated a
ferent density distribution at the end of the simulation.
four out of the five different initial conditions, their simula
tions did not agree with the Vlasov prediction. These sim
lations were carried out for about 1000 characteristic ti
units ~one characteristic time for the sheet system is the t
that a sheet takes to traverse the system!. The differences in
density distributions for different initial conditions sugge
that the system still ‘‘remembers’’ the initial condition an
has not yet reached equilibrium. To test the spherical s
model, we created different initial conditions for the sam
energy and inner boundary radius and ran the simula
again. The initial virial ratio varied from 0.06 to 1.3 for th
two different initial conditions. All three cases~4, 16, and 64
particles! were run with the new initial conditions and th
density distributions were found to be almost identical to
ones shown in Fig. 3.

The relaxation time scales for the parallel sheet a
spherical shell systems are significantly different. It has b
shown by simulation that the sheet system may reach e
librium on a time scale of 13107 characteristic times. A
commonly used characteristic time for spherical system
the amount of time that a cold system~no kinetic energy!
takes to collapse and then expand back to its original dis
bution. We found that in all instances the upper bound cr
ria (s2,1.031028) was attained in less than 43105 char-
acteristic times, about two orders of magnitude less than
required for relaxation of the sheet system. The duration
the simulations carried out by Reidl and Miller, in whic
relaxation was not observed, was on the order of 1000 un
In contrast, it can be seen from Fig. 2 that relaxation of
shell system was completed in about 800 units.

e
as

FIG. 3. The average density distribution for the simulation o
particles, 16 particles, and 64 particles is shown. All units are
mensionless. The dashed line shows the density distribution
tained from the Vlasov theory. Convergence to the Vlasov limit
observed for increasing population.
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IV. CONCLUDING REMARKS

The evolution of the spherical shell system differs fro
the parallel sheet system in two respects. First, the relaxa
time is much less than two orders of magnitude smaller
the shell system; second, for the energy considered, mem
of the initial state is lost much more rapidly for the sh
system.

Several factors could be responsible for the difference
behavior between the parallel sheet and spherical shell
tem. First, the parallel sheet system does not have the re
tive boundaries that are present in the shell system. Th
boundaries induce discontinuities in the shells’ veloci
which could aid the system in reaching equilibrium mo
quickly. The boundaries may also hinder the developmen
a core-halo structure that develops in the sheet system. I
been suggested that the weak interaction between core
halo is responsible for the slow relaxation time of the sh
system@8#. However, core-halo structures also develop in
one-dimensional spherical shell systems studied by He
@14# and Yangurazova and Bisnovatyi-Kogan@15# and yet
both studies find evidence of a stationary state. These mo
do not have an outer boundary and shells may escape
the system so their equilibrium is not defined. The spher
models used in these studies differ from ours by including
angular momentum term in the equations of motion wh
effectively shields the singularity at the center of the syste
Recently these models possessing angular momentum
been used to investigate the self-similar structure@16# and
Lynden-Bell theory of violent relaxation@17# of spherical
mass distributions.

In the spherical shell model the Vlasov approximation
the density profile is approached under the specified co
tions for total energy and inner boundary radius as the n
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e

a

on
r
ry

in
s-
c-
se
,

of
as
nd
t

e
n

els
m

al
n
h
.
ve

r
i-
-

ber of particles increases from 4 to 64. Similar behavior w
recently observed in the planar sheet system@18#. We note
that the average density profiles obtained from the simula
do not change when new initial conditions~that still retain
the total energy and inner boundary radius! are imposed.
This convergence to the same density profile for differ
initial conditions gives added confidence that the system
ergodic and sampling the complete phase space. In l
work we will show that a phase transition is predicted in t
Vlasov limit for the shell system for certain values of ener
and inner boundary radius. In this paper, however, we h
chosen system parameters far from this transition in orde
study the system isolated from its influence.

An open question for both the planar sheet and the sph
cal shell systems concerns the population dependence o
system relaxation time. In each case, randomness is in
duced into the dynamics by the crossing of a pair of partic
~sheets or shells!. Whenever a crossing occurs, there is
discontinuous change in the acceleration of each parti
Recently, for the sheet system, one of us has shown th
the crossing times are random then, in the largeN limit, the
acceleration of a particle becomes a diffusion@19#. The con-
sequence is a relaxation time which scales withN. Since the
discontinuity is common to both systems, the arguments u
apply equally to the system considered here. The validity
this theory has yet to be tested and is the subject of fu
work.
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